Math 259A Lecture 11 Notes

Daniel Raban

October 21, 2019

1 Multiplication Operators on L^2

1.1 Multiplication operators on L^2

Let (X, \mathcal{F}, μ) be a probability space (we usually assume \mathcal{F} to be countably generated). Then X is measurably isomorphic to $[0,1] \oplus \{1,2,\ldots\}$, where [0,1] has (scaled) Lebesgue measure and $\{1,2,\ldots\}$ has some scaled counting measure on a subset. If X is a compact metric space, we usually take \mathcal{F} to be the σ -algebra of Borel sets. We choose μ to be regular and assume $\sup(x) = X$. In particular, we may take X to be the spectrum of an operator $x \in \mathcal{B}(H)$.

Consider $L^{\infty}(X,\mu)$ with $\|\cdot\|_{\infty}$. If we define $f^*(t) = \overline{f(t)}$, then we get a C^* -algebra structure. If $f \in L^{\infty}$, we get a multiplication operator on $L^2(\mu)$ given by $M_f(g) = fg$. Moreover, $\|fg\|_2 \leq \|f\|_{\infty} \|g\|_2$, so $M_f \in \mathcal{B}(L^2)$ with $\|M_f\| \leq \|f\|_{\infty}$.

Proposition 1.1. $||M_f|| = ||f||_{\infty}$.

Proof. Let $X_m = \{t \in X : |f(t) \ge ||f||_{\infty} - 1/n\}$. Then $\mu(X_m) > 0$. Then

$$||M_f(\mathbb{1}_{X_m})||_2 = \int_{X_n} |f|^2 d\mu \ge \left(\left(||f||_{\infty} - \frac{1}{m} \right)^2 \mu(X_m) \right)^{1/2} = (||f||_{\infty} - \frac{1}{m}) ||\mathbb{1}_{X_m}||_2.$$

So if $\xi_n = \|\mathbb{1}_{X_m}\|_2^{-1}\mathbb{1}_{X_m}$, then we get $\|M_f\xi_n\|_2 \ge \|f\|_\infty - 1/m$.

Corollary 1.1. $f \mapsto M_f$ is an isometric *-algebra morphism from L^{∞} into $\mathcal{B}(H)$.

Proof. We have that $f \mapsto M_f$ is a *-algebra morphism, and $M_{\overline{f}} = (M_f)^*$.

Theorem 1.1. $\mathcal{A} := \{M_f : f \in L^{\infty}\} \subseteq \mathcal{B}(L^2) \text{ is a von Neumann algebra (i.e. it is WO-closed). Moreover, <math>\mathcal{A}' = \mathcal{A} \text{ (so } \mathcal{A} \text{ is maximal abelian in } \mathcal{B}(L^2)).$

Proof. By von Neumann's bicommutant theorem, we need only show that $\mathcal{A}' = \mathcal{A}$. Let $T \in \mathcal{B}(L^2)$, and suppose that $TM_f = M_fT$ for all $f \in L^{\infty}$. Then let $\varphi := T(1) \in L^2$.

Define $M_{\varphi}: L^2 \to L^1$ by $M_{\varphi}(\psi) = \varphi \psi$ (the image is in L^1 by Cauchy-Schwarz). Then $||M_{\varphi}||_{\mathcal{B}(L^2,L^1)} \leq ||\varphi||_2$ by Cauchy-Schwarz. Both T,M_{φ} are continuous from $L^2 \to L^1$, and they coincide on $L^{\infty} \subseteq L^2$ because if $f \in L^{\infty}$,

$$T(f) = TM_f(1) = M_fT(1) = M_f(\varphi) = f\varphi = M_{\varphi}(f).$$

Since L^{∞} is dense in L^2 , $T = M_{\varphi}$ as operators in $\mathcal{B}(L^2, L^1)$. So $M_{\varphi}(L^2) \subseteq L^2$. Why is $\varphi \in L^{\infty}$? Assume that $\varphi \notin \ell^{\infty}$. Let $X_n = \{t \in X : |\varphi(t)| \geq n\}$, and let $\xi_n = \mu(X_n)^{-1/2} \mathbb{1}_{X_n}$. Then $\|M_{\varphi}(\xi_n)\|_2 \geq n$. Letting $n \to \infty$ yields a contradiction.

Sups of dominating sequences of operators

Lemma 1.1. Let $x = x^* \in \mathcal{B}(H)_h$ and let $f_n, g_m \geq 0$ be increasing sequences of continuous functions on Spec(x) that are both uniformly bounded. If $\sup_n f_n(t) \leq \sup_n g_n(t)$ for all $t \in \operatorname{Spec}(x)$, then $\sup_n f_n(x) \le \sup_n g_n(x)$.

Let $e_t := \mathbb{1}_{(t,\infty)}(x)$. We can then build all bounded measurable functions using these, and this will give us a functional calculus for all Borel measurable functions.